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Introduction: Functional brain networks (FBNs) estimated from functional magnetic

resonance imaging (fMRI) data has become a potentially useful way for computer-

aided diagnosis of neurological disorders, such as mild cognitive impairment (MCI),

a prodromal stage of Alzheimer’s Disease (AD). Currently, Pearson’s correlation (PC)

is the most widely-used method for constructing FBNs. Despite its popularity and

simplicity, the conventional PC-based method usually results in dense networks

where regions-of-interest (ROIs) are densely connected. This is not accordance with

the biological prior that ROIs may be sparsely connected in the brain. To address this

issue, previous studies proposed to employ a threshold or l_1-regularizer to construct

sparse FBNs. However, these methods usually ignore rich topology structures, such

as modularity that has been proven to be an important property for improving the

information processing ability of the brain.

Methods: To this end, in this paper, we propose an accuratemodule induced PC (AM-

PC) model to estimate FBNs with a clear modular structure, by including sparse and

low-rank constraints on the Laplacian matrix of the network. Based on the property

that zero eigenvalues of graph Laplacian matrix indicate the connected components,

the proposed method can reduce the rank of the Laplacian matrix to a pre-defined

number and obtain FBNs with an accurate number of modules.

Results: To validate the e�ectiveness of the proposed method, we use the estimated

FBNs to classify subjects with MCI from healthy controls. Experimental results on

143 subjects from Alzheimer’s Disease Neuroimaging Initiative (ADNI) with resting-

state functional MRIs show that the proposed method achieves better classification

performance than previous methods.

KEYWORDS

functional brain network, modularity, Laplacian matrix, mild cognitive impairment, disease

identification

1. Introduction

Alzheimer’s disease (AD), characterized by intellectual disability and abnormal behavior,

is the most common form of dementia (Goedert and Spillantini, 2006). With the progress

of AD, it will gradually destroy the memory of patients and even affect their ability of daily

living. Even though there is no effective treatment for curing AD, the progress of AD disease

be delayed by early intervention (Hampel et al., 2008). Thus, classifying the prodromal stage of

AD, namely mild cognitive impairment (MCI), has received considerable attention in the past

decades (Rombouts et al., 2005; Desikan et al., 2009; Zhu et al., 2014; Jie et al., 2018; Liu et al.,

2018; Vogt et al., 2020).

Frontiers in AgingNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://doi.org/10.3389/fnagi.2023.1101879
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2023.1101879&domain=pdf&date_stamp=2023-02-16
mailto:zhanglimei@lcu.edu.cn
mailto:mxliu1226@gmail.com
https://doi.org/10.3389/fnagi.2023.1101879
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnagi.2023.1101879/full
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Du et al. 10.3389/fnagi.2023.1101879

FIGURE 1

A functional brain network with multiple modules that have dense

within-module connection and sparse between-module connection.

To classify subjects with MCI, researchers have developed

different ways for quantitatively measuring the brain activity

and organization. Especially, functional brain networks (FBNs)

estimated from resting-state functional MRI (rs-fMRI) data have

been increasingly employed to study the transition from MCI to

AD (Chen et al., 2021). In mathematics, the FBN can be simulated by

a graph G(V ,E), where V is the node set containing multiple regions-

of-interest (ROIs) in the brain, and E is the edge set containing the

“connections” between pairs of ROIs. In practice, with a given order

of the nodes, the FBN can be equivalently described by an edge

weighting matrix (i.e., adjacency matrix W) (Bullmore and Sporns,

2009; Qiao et al., 2016).

Recent studies have shown that a well-estimated FBN (with W)

tends to benefit the MCI identification, which makes FBN estimation

become a hot research topic in the field (Zhou et al., 2018a; Jiang

et al., 2019; Xue et al., 2020). Among various FBN estimationmethods

developed in the past decades, Pearson’s correlation (PC) is the

most popular one due to its simplicity and empirical effectiveness.

But PC-based methods always result in dense FBNs, which is not

accordance with the biological prior of brains (i.e., ROIs may be

sparsely connected in the brain) (Bechtel, 2003; Wen et al., 2019).

To address this limitation, a threshold is usually utilized to sparsify

the estimated FBN by removing weak connections (with edge weights

smaller than the pre-defined threshold). Alternatively, Li et al. (2017)

introduced an l1-norm regularizer to the PC model for achieving a

sparse FBN.

It has been reported that FBN generally has more topological

structures than just sparsity (Meunier et al., 2009; Zhao et al.,

2012; Sporns, 2016; Wang et al., 2019a; Wen et al., 2019). For

example, one of the most representative structure is modularity

that is believed to be extremely important for promoting stability,

conserving wiring cost, and enabling complex neuronal dynamics of

our brain. As shown in Figure 1, a module in network is a group

of nodes with relatively dense interconnections, often corresponding

to specialized functional components (Sporns and Betzel, 2016).

For FBN, the modular structure can divide the labor of each brain

region more clearly, and make our brain work efficiently. To obtain

a sparse FBN, some researchers introduced the l1-norm regularizer

to the construction of FBN. The l1-norm regularization model

may automatically find significant network connections and provide

sparse solutions since the weights of insignificant connections are

automatically driven to zero (Ryali et al., 2012; Jie et al., 2016;

Zheng et al., 2018). Specially, Ryali et al. (2012) combined l1-

and l2-norm regularization for estimating sparse partial correlations

between brain regions in fMRI data. Jie et al. (2016) first constructed

connectivity hyper-networks from rs-fMRI time series by using l1-

norm to characterize the interactions among different brain regions

and then used the hyper-networks for brain disease diagnosis. Zheng

et al. (2018) constructed a multi-feature-based network by employing

a linear regression model with a l1-norm penalty to enhance the

diagnostic accuracy of AD and MCI and also help discover the

underlying neural mechanisms. However, these studies usually ignore

modular brain structure, which is an important prior knowledge

of the human brain. For instance, the central executive network

(CEN) is responsible for high-level cognitive functions such as

planning, decision making, and the control of attention and working

memory, while the default mode network (DMN) includemany brain

areas that form an integrated system for self-related mental activity,

including autobiographical, self-monitoring, and social functions

(Liang et al., 2016).

To address this issue, in this paper, we propose a new FBN

estimation method based on graph Laplacian matrix decomposition.

Due to the property that the zero eigenvalues of graph Laplacian

matrix indicate the connected components (Oellermann and

Schwenk, 1991), the proposed method can reduce the rank of the

Laplacian matrix to a pre-defined number and obtain FBN with

an accurate number of modules. To verify the effectiveness of

our method, we use the public Alzheimer’s Disease Neuroimaging

Initiative (ADNI) dataset to classify subjects with MCI from

normal controls (NCs) based on the estimated FBNs. The

experimental results show that our method can effectively improve

the identification accuracy compared with conventional methods on

functional brain network estimation.

The rest of this paper is organized as follows. In Section 2, we

introduce the preprocessed data, review three related conventional

FBN estimation method, present our proposed method to estimate

FBNs and FBN-based brain disease classification. Then, we describe

the experimental setting. In Section 3, we report the experimental

results on classification tasks and visually compare the FBNs

estimated by our AM-PC and six competing methods, and also

analyse the influence of module number. In Section 4, we discuss

the discmininative features identified by our method and compare

our method with several state-of-the-art methods on FBN-based

MCI identification with rs-fMRI data from ADNI. Then, we

present several limitations of this work and possible future research

directions. In Section 5, we summarize the paper.

2. Materials and methods

As shown in Figure 2, we develop a FBN-based brain disease

classification framework, including three major components: fMRI

preprocessing, our proposed accurate module induced PC (AM-PC)

method for FBN construction, and FBN-based disease classification.

In the following, we first introduce the materials and image

preprocessing used in this work, and review several PC-based
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FIGURE 2

Pipeline of the proposed accurate module induced PC (AM-PC) method for functional brain network (FBN) construction and FBN-based MCI

identification with resting-state fMRI data.

TABLE 1 Demographic information of the studied 299 rs-fMRI scans from

the ADNI database.

Category Scan # Age (Years) Gender (M/F)

NC 154 75.36± 6.16 67/87

MCI 145 71.99± 7.67 95/50

The values are denoted as mean±standard deviation. M/F, male/female.

methods. Then, we present the proposed method for FBN estimation

and experimental setting.

2.1. Materials and image preprocessing

A total of 143 participants from the ADNI dataset (Wang et al.,

2019b) were used in this work, including 95 MCIs and 48 NCs.

Each participant was scanned at one or more visits in this study,

and the interval between two visits is at least 6 months, resulting

in a total of 299 resting-state fMRI scans. These 299 scans include

154 NC cases and 145 MCI cases. The scanning parameters were

listed as follows. The slice thickness is 3.31 mm, TE (echo time)

is 30 ms, TR (repetition time) is 2.2 − 3.1 s, the in-plane image

resolution is 2.29 − 3.31 mm, and the scanning time for each subject

is 7 min (resulting in 140 volumes). Table 1 shows the demographic

information of these 299 scans.

To reduce the influence of nuisance signals, the preprocessing

pipeline in FSL FEAT is used in this work. Specifically, for each

subject, we discard the first 3 volumes in the fMRI time course

for signal stabilization. And then the remaining 137 volumes were

processed via the standard pipeline. The main steps in preprocessing

include slice timing correction, head motion estimation, bandpass

filtering, and regression of nuisance covariates (i.e., white matter,

cerebrospinal fluid, and motion parameters) by mean regression.

Note that subjects were removed if their head motion > 2.0 mm

of maximal translation or 2.0o of maximal rotation. After that, we

performed skull stripping based on T1-weightedMRI and aligned the

skull-stripped fMRIs onto the Montreal Neurological Institute space.

Then, we used a Gaussian kernel with full-width-at-half-maximum of

6 mm to spatially smooth the volumes. The subjects with more than

2.5 min of frame-wise displacement (FD > 0.5) were excluded from

further analysis. Finally, every brain was divided into 116 ROIs based

on the Automated Anatomical Labeling (AAL) template (Tzourio-

Mazoyer et al., 2002), and the mean time series (with band-pass

filtered 0.015 − 0.15 Hz) of each ROIs were extracted as the input

data for FBN estimation.

2.2. Related work

Due to the crucial role in exploring the neurodegenerative

diseases, many FBN estimation methods have been proposed in the

past decades. In this section, we briefly review several PC-based

methods that are closely related to our study.

As pointed out earlier, PC is the simplest and most popular

method for FBN estimation (Smith et al., 2013). The edge weight of

PC-based method for FBN estimation is defined as follows:

wij =
(xi − x̄i)

T(xj − x̄j)
√

(xi − x̄i)T(xi − x̄i)
√

(xj − x̄j)T(xj − x̄j)
, (1)
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Where xi ∈ Rm is the blood oxygen level-dependent (BOLD) signals

associated with the ith ROI, and x̄i ∈ Rm is a vector containing the

mean of the elements in xi.

Without loss of generality, we redefine xi = (xi −

x̄i)/
√

(xi − x̄i)T (xi − x̄i). Then, Equation (1) can be simplified

as wij = xTi xj, which is exactly the solution of the following

optimization problem:

min
wij

n
∑

i,j

‖ xi − wijxj‖
2, (2)

or its matrix form shown as follows:

min
W

‖W − XTX‖2F , (3)

Where W is the adjacency matrix to be estimate by PC, X =

[x1, x2, · · · , xn] ∈ Rm×n is the data matrix containing the fMRI time

courses, and n is the number of ROIs. We will note shortly that such

an optimization view of PC can help us to develop new and more

flexible FBN estimation methods.

Despite its popularity, PC aims to measure the full correlation

between signals of all ROIs in the brain, thus generating dense

networks where all nodes/ROIs are densely connected. This is not

consistent with the empirical finding that sparsity has been proven

to be the most popular property of FBN (Sporns, 2016). Therefore,

in practice, a threshold is generally used to sparsify the originally

estimated FBN by removing the edges with weak weights. An

alternative to sparsify FBN is the l1-regularized PC (PCSparsity) (Li

et al., 2017) whose model is given as follows:

min
W

‖X − XW‖2F + λ‖W‖1, (4)

where ‖W‖1 is the l1-norm of a matrix for encoding the sparsity prior

of FBN, and λ is a regularized parameter for controlling the sparsity

ofW.

Besides sparsity, FBNs usually have more richer

structures (Sporns, 2016) such as modularity, and some of these

structures may guide us to estimate more reasonable FBNs. Recently,

Zhou et al. (2018b) developed an M-FBN method to estimate FBN

by further introducing a trace norm regularizer into Equation (4),

resulting in the following model:

min
W

‖X − XW‖2F + λ1‖W‖1 + λ2‖W‖∗, (5)

Where ‖W‖∗ is the trace norm of the matrix W, and λ1 and λ2

are regularized parameters for controlling the balance between the

three terms in the objective function. With the combination of l1 and

trace norms, Equation (5) has been verified to be able to discover

modular structures of the estimated FBN. However, since this model

is an approximation of the sparse and low-rank matrix, the network

estimated by M-FBN could not include a notable modular structure.

2.3. Proposed method for FBN estimation

Several previous Studies (Grone et al., 1990; Zhou et al., 2018b)

proposed to jointly minimize the l0-“norm” and the rank of the edge

weighting matrix W, since a sparse (via minimizing l0-“norm”) and

low-rank (viaminimizing the rank) matrix tends to result in modular

structures. However, these two regularizers are both non-convex

with respect to W, making the optimization problem intractable. In

practice, they are generally relaxed to l1-norm ‖W‖1and trace norm

‖W‖∗ respectively. Such relaxation only achieves an approximation

of a sparse low-rank matrix, and thus fails to guarantee the modular

structure of FBN.

Motivated by the theorem (Heider, 1946) that the multiplicity k

of the eigenvalues 0 of a Laplacian matrix is equal to the number

of connected components in a graph, we propose a new method

to estimate FBNs with an accurate number of modularity. Denote

n (n = 116 in this work) as the number of ROIs and k (k = 8

in this work) as the number of modules. Specifically, based on the

l1-regularized PC method defined in Equation (4), we propose to

constrain the rank of LW as n− k to generate a FBN with an accurate

number of modules. Mathematically, the proposed AM-PC model is

given as follows:

min
W

‖W − XTX‖2F + λ6n
i,j‖W‖1

s.t. W ≥ 0, rank(LW) = n− k,
(6)

Due to the nonnegative constraint in Equation (6), the l1-norm

can be replaced by the sum of the elements in the matrix. In fact,

the nonnegative assumption for edge weights is supported by the

structural equilibrium theory (Fan, 1949; Cartwright and Harary,

1956), and can simplify the subsequent analysis for FBNs. With

Equation (6), we can explicitly construct an FBN with a total of k

modules for each subject.

Given the data matrix X and a matrix A = XTX, we can rewritten

Equation (6) as follows:

min
W

‖W − A‖2F + λ6n
i,jWij

s.t. W ≥ 0, rank(LW) = n− k.
(7)

In general, it is not straightforward to solve (Equation 7) since

rank(LW) = n − k is a strict constraint. In what follows, we derive

an efficient optimization algorithm to solve this challenging problem.

Denote σi(LW) as the i-th smallest eigenvalue of LW . Accordingly,

Equation (7) can be equivalently converted to the following problem:

min
W≥0

‖W − A‖2F + α6k
i=1σi(LW)+ λ6n

i,jWij, (8)

Where LW is positive semi-definite to guarantee σi(LW) ≥ 0,

and a large α enables 6k
i=1σi(LW) = 0 to meet the constraint of

rank(LW) = n− k.

Furthermore, our proposed optimization method is based on the

Ky Fan’s theorem (Grant and Boyd, 2014) as follows:

6k
i=1σi(LW) = min

F∈Rn×k ,FTF=I
Tr(FTLWF). (9)

By combining Equations (8), (9), we have the problem:

min
W≥0

‖W − A‖2F + αTr(FTLWF)+ λ6n
i,jWij

s.t. W ≥ 0, F ∈ Rn×k, FTF = I.
(10)

Which can be efficiently solved by the following alternating

optimization algorithm.
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Require: Data Matrix X, the number of modules k, the

parameters λ and α.

Ensure: Edge weight matrix W.

1: Update F, the optimal solution of F is composed

of k eigenvectors corresponding to the k smallest

eigenvalues of LW.

2: Update W, the optimal solution of W is obtained by

solving problem (14).

Algorithm 1. Algorithm for solving the proposed model in Equation (10).

Step 1: WhenW is fixed, Equation (10) becomes

min
F∈Rn×k ,FTF=I

Tr(FTLWF), (11)

Whose the optimal solution is formed by the k eigenvectors

corresponding to the k smallest eigenvalues of LW .

Step 2: When F is fixed, Equation (10) becomes

min
W≥ 0

‖W − A‖2F + αTr(FTLWF)+ λ

n
∑

i,j

Wij, (12)

which is equivalent to the following problem:

min
W≥ 0

∑

i,j

(Wij − aij)
2 +

α

2

∑

i,j

‖fi − fj‖
2
2Wij + λ

n
∑

i,j

Wij . (13)

For simplicity, we denote ‖fi − fj‖
2
2 as fij. Then, by expanding and

combining the like terms, Equation (13) can be rewritten as follows:

min
W≥0

∑

i,j

(

W2
ij + (

α

2
fij − 2aij + 1)Wij + a2ij

)

, (14)

Which is a quadratic programming problem and can be easily solved

by, for example, the CVX toolbox (Grant and Boyd, 2014). We

summarize the optimization algorithm to solve Equation (10) in

Algorithm 1.

2.4. Experimental setting

Based on the learned edge weighting matrixW, we can construct

a specific FBN with k modules for each subject. Given FBNs for all

subjects, the subsequent task is to classify MCI and NC based on the

estimated FBNs. Since the given FBNs are symmetry matrices, the

upper and lower triangle matrix features are the same, and for ease

of calculation, we take the upper triangle features including (116 ×

(116− 1)) ÷ 2 = 6, 670 elements. Although the edge weight matrix

contains the full information of the network, it typically causes the

curse of dimensionality, since the number of feature dimension (Kuo

and Sloan, 2005), i.e. 6670, is far greater than the number of subjects.

To address this issue, we propose to employ the t-test algorithm

to select the most informative features by a fixed p values (p = 0.05

in this work). As pointed out inWee et al. (2014), the classifier design

has a big influence on the ultimate accuracy. For this reason, we

employ a linear support vector (SVM) with the default parameter

(i.e., C = 1) as classifier (Chang and Lin, 2011) in this work,

considering that it is simple and widely used in neuroimaging-based

brain disorder classification.

In the experiments, we use a 5-fold subject-level cross-validation

(CV) strategy (Li et al., 2017) to evaluate different methods, to ensure

that fMRI scans of the same subject will not appear in both training

and testing sets. To reduce the biased introduced by random partition

cross validation, the 5-fold CV process was repeated 100 times for all

methods. Besides, for the fair comparison, all the competing methods

use the same linear SVM (with C = 1) as the classifier.

Since the parameters may significantly affect the structure of the

constructed networks and the classification results, we select optimal

parameters through grid search via inner 5-fold CV based on only

training data. Specifically, we uniformly utilize 11 candidate values

[2−5, 2−4, · · · , 25] for the regularization parameters (λ, λ1 and λ2) in

the four competing methods (i.e., PCSparsity, PCSparsity+, M-PC, and

M-PC+). The proposed AM-PC has three parameters, i.e., k, λ and

α. The module number k is empirically set as 8 based on the prior

knowledge (Wong, 2015). The optimal value of α can be determined

by a heuristic approach. That is, we first initialize α with a small value.

Then, in each iteration, we compute the number of zero eigenvalues

in LW , if it is larger than k, then divide α by 2; if it is smaller than

k, then multiply α by 2; otherwise stop the iteration. Thus, in AM-

PC, we only need to tue the parameter λ. In our experiment, the

elements in the network tend to zero when λ is equal to the number

in [20, 21, · · · , 25], and the network loses its discriminative capability.

Therefore, the optimal value of λ in our AM-PC is selected from

[2−11, 2−10, · · · , 2−1] via inner 5-fold CV.

3. Results

With the extractedmean signal of each ROI, we estimate FBNs via

the proposedAM-PCmethod and three different methods, including

(1) PC with its model defined in Equation (3), (2) PCSparsity (Li et al.,

2017) with its model defined in Equation (4), and (3) M-PC (Zhou

et al., 2018b) with its model defined in Equation (5). The proposed

AM-PC usually selects an ROI with small weights and limited degrees

as a separatemodule. To alleviate this problem, we use the normalized

Laplacian matrix LW instead of the original Laplacian matrix. In the

proposed AM-PC, the constraint in Equation (6) helps generate a

nonnegative FBN for each subject. For a fair comparison, we also

compare our AM-PC with three additional methods, including (1)

PC+, (2) PCSparsity+, and (3) M-PC+, and these three methods

remove the negative edges in networks estimated by PC, PCSparsity,

and M-PC, respectively.

3.1. Classification results

In this section, we perform MCI identification (i.e., MCI vs.

NC classification) based on the FBNs estimated by seven different

methods (including PC, PC+, PCSparsity, PCSparsity+, M-PC, M-PC+,

AM-PC). For sevenmethods, we employ the same t-test algorithm for

feature selection and the linear SVM for classification to ensure the

fair comparison. Four metrics are used to evaluate the classification

performance, including accuracy (ACC), sensitivity (SEN), specificity

(SPE) and AUC. Denote TP, TN, FP and FN as true positive, true

negative, false positive and false negative, respectively. These four

metrics are defied as follows: ACC= TP+TN
TP+FP+TN+FN , SEN=

TP
TP+FN ,
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TABLE 2 Classification performance (mean ± standard deviation) of 7 di�erent methods in MCI vs. NC classification.

Method ACC SEN SPE AUC

PC 0.7454± 0.0028 0.7198± 0.0128 0.7730± 0.0081 0.8246± 0.0083

PC+ 0.7692± 0.0115 0.7847± 0.0151 0.7551± 0.0167 0.8563± 0.0662

PCSparsity 0.7705± 0.0100 0.7386± 0.0113 0.7995± 0.0120 0.8475± 0.0061

PCSparsity+ 0.7899± 0.0099 0.7820± 0.0114 0.8035± 0.0303 0.8728± 0.0036

M-PC 0.7801± 0.0111 0.7727± 0.0228 0.8046± 0.0180 0.8352± 0.0056

M-PC+ 0.7837± 0.0102 0.7805± 0.0206 0.7861± 0.0045 0.8616± 0.0024

AM-PC (Ours) 0.8013± 0.0106∗ 0.7836± 0.0130 0.8182± 0.0189∗ 0.8773± 0.0075∗

The term marked by “*” denotes that the result of proposed AM-PC is significantly better than that of all six competing methods (with p < 0.05).

The bold values indicate the best results.

FIGURE 3

Seven edge weight matrices of the same subject estimated by seven di�erent methods, i.e., (A) PC, (B) PC+, (C) PCSparsity , (D) PCSparsity+, (E) M-PC, (F)

M-PC+, and (G) AM-PC. (H, I) show the modules in the networks estimated by M-PC and the proposed AM-PC methods.

SPE= TN
TN+FP , and AUC is the area under the ROC (receiver operating

characteristic) curve.

In Table 2, we report the classification results of MCI vs. NC

classification achieved by seven different ways. The term marked by

“*” denotes that the result of proposed AM-PC is significantly better

than that of all six competing methods (with p < 0.05). It can be

seen from this table that our proposed AM-PC method consistently

outperforms the six competing methods in terms of four evaluation

metrics. And the AM-PC is significantly better (with p < 0.05)

than the six methods in terms of ACC, SPE and AUC values. These

results imply that the modularity prior introduce by our method

plays an important role in modeling the rich topological structure

of functional brain networks, thus helping boost the identification

performance of subjects with MCI.

3.2. Estimated functional brain networks

We visually compare the FBNs estimated by our AM-PC and six

competing methods. In Figures 3A–G, we take a randomly selected

subject from ADNI as an example to visualize the FBNs estimated by

Frontiers in AgingNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fnagi.2023.1101879
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Du et al. 10.3389/fnagi.2023.1101879

FIGURE 4

The ACC, SEN, SPE and AUC values of our AM-PC method with di�erent numbers of modules (i.e., k) in the task of MCI vs. NC classification.

FIGURE 5

Top 12 discriminative connections and ROIs in our estimated FBNs selected by t-test. The thickness of each arc denotes the discriminative power of the

corresponding connection in MCI vs. NC classification.

these seven methods. Here, the corresponding parametric values are

λ = 2−2 for PCSparsity and PCSparsity+, λ1 = 23, λ2 = 22 for M-PC

and M-PC+, and λ = 2−1 for our AM-PC.

It can be seen from Figures 3A–G that the FBNs estimated

by PCSparsity, PCSparsity+, M-PC, M-PC+ and AM-PC are sparse.

This is due to the introduction of the l1-norm regularizer in

these three methods. Besides, the FBN estimated by our proposed

AM-PC method shows clearer modular structure than others. The

underlying reason could be that AM-PC apply a low-rank constraint

to LW , thus yielding more clear modules in the estimated functional

brain network.

To show the modular structure of the network constructed by

AM-PC more clearly, we use scatter plots to illustrate the networks

estimated by M-PC and our AM-PC in Figures 3H, I, respectively.

From Figures 3H, I, we can observe that our AM-PC can generate

an accurate number (i.e., k = 8) modules in the estimated
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FIGURE 6

Identified 8 modules of the average network (among training subjects), where nodes with the same color belong to the same module. Gray dotted lines

represent the 12 most discriminative connections. Green boxes denote 16 brain regions that are related to MCI (Suk et al., 2015; Yu et al., 2017).

FBN, compared with the M-PC method that aims to generate

FBNs with approximate modules. These results further validate the

effectiveness of the proposed method in generating FBNs with clear

modular structures.

3.3. Influence of number of modules

As a complex network, FBN include the hierarchical

structure (Meunier et al., 2009, 2010), and the number of modules

increase with the deeper of the FBN level. Thus, it is a practical

problem to select the optimal values of the parameter k in the

proposed objective function in Equation (6). Previous studies

works (Bertolero et al., 2015; Geerligs et al., 2015; Gallen et al., 2016;

Murakami et al., 2018) have shown that the number of modules in

the FBN is usually less than 10. To study the influence of the number

of modules on the classification performance, we report the four

performance metrics (i.e., ACC, SEN, SPE and AUC) achieved by

the proposed AM-PC method using different values of k in Figure 4.

From Figure 4, we can see that the AM-PC method can achieve

overall stable results when 6 ≤ k ≤ 9, and the best AUC value is

achieved with k = 8.

4. Discussion

In this section, we visually show the most discriminative

features and modular structures identified by our method. We also

compare our method with several state-of-the-art methods and list

several limitations of the current work as well as possible future

research directions.

4.1. Discriminative functional connections

We further show the most discriminative functional connections

in FBNs estimated by the proposed AM-PC method. We empirically

set k = 8 and use the t-test (with p = 10−6) to

select the top 12 most informative connections. The identified

discriminative connections are shown in Figure 5, where the

discriminating power of a connection between two ROIs is

represented by the thickness of an arc. As can be seen from

Figure 5, the discriminative brain regions corresponding to these

selected connections include several important ROIs, such as right

hippocampus, right amygdala, and middle temporal gyrus. Especially,

a clear discriminative functional connectivity exists between right

temporal pole sup and right amygdala, and such connectivity

plays an important role in cognition and emotion (Menon, 2018).

The discriminative ROIs identified by our method also include

right hippocampus, a brain region that is primarily associated

with memory (Disouky et al., 2022). This finding is consistent

with previous research (Albert et al., 2011; Kesler, 2014; Zhu

et al., 2015), which further validates the effectiveness of our AM-

PC method in constructing reliable functional brain networks for

MCI identification.
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FIGURE 7

Identified 8 modules of the average network (among training subjects) on the brain template, where nodes with the same color belong to the same

module.

TABLE 3 Comparison with state-of-the-art methods for FBN-based MCI vs. NC classification with rs-fMRI data from ADNI.

Method Subject # ACC SEN SPE AUC

Chen et al. (2017) 54MCI+54NC 0.7870 0.7778 0.7963 0.8449

Kam et al. (2019) 49MCI+48NC 0.7607 0.7627 0.7587 −

Yang et al. (2019) 47MCI+29NC 0.8298 0.7662 − 0.9406

Xue et al. (2020) 45MCI+46NC 0.7692 0.8222 0.7174 −

AM-PC (Ours) 95MCI+48NC 0.8013 0.7836 0.8182 0.8773

The top 2 best results are shown in bold.

4.2. Identified modular structure

In Figure 6, we visually show the modular structure of the

average functional brain network (i.e., the average FBN of all training

subjects), including 8 modules (with α = 2−3). The gray dotted lines

represent the 12 most discriminative connections identified by our

AM-PC method (see Figure 6). In the following Figure 7, we map

Figure 6 on the brain template through BrainNet Viewer (Xia et al.,

2013), where each node is a brain region, and each edge is the link

between the brain region.

From Figures 6, 7, we have the following observations. First,

we can clearly see that these eight modules are sparsely connected

with each other, while nodes/ROIs within each module are densely

connected, which caters to the results in previous papers (Meunier

et al., 2010; Bertolero et al., 2018). Second, the ROIs contained in

the Module 1 and Module 3 are associated with cognitive functions

of the brain, involving the middle temporal gyrus (ROI IDs: 85

and 86), hippocampus (IDs: 37 and 38), parahippocampus (IDs: 39

and 40), precuneus (IDs: 67 and 68), amygdalae (IDs: 41 and 42),

supramarginal gyrus (IDs: 63 and 64), inferior parietal lobules (IDs:

61 and 62), superior-medial frontal gyrus (IDs: 23 and 24), andmedial

orbitofrontal gyrus (IDs: 25 and 26). These regions are believed

to be biologically associated with MCI, as reported in previous

studies (Yetkin et al., 2006; He et al., 2007; Fair et al., 2008). Besides,

we found that most of the 12 most discriminative connections are

distributed betweenModule 1,Module 2 andModule 3. These results

may imply that the interruption of the connections between the three

modules could be used as potential biomarkers for MCI detection.

4.3. Comparison with state-of-the-arts

We also compare our AM-PC method with several state-of-the-

art methods on FBN-based MCI identification with rs-fMRI data
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fromADNI. In Table 3, we briefly summarize the classification results

of several previous studies as well as our method, where the top 2

best results are shown in bold. As can be seen from Table 3, our AM-

PCmethod can achieve the overall comparable results compared with

four SOTAmethods. Even though the ACC and AUC results reported

in Yang et al. (2019) are better than ours, their evaluation was based

on a relatively smaller dataset compared with this work.

4.4. Limitations and future work

The current work has some limitations. First, in this work, we

obtained the modularity of FBNs based on the PC-based networks. In

fact, our method can also be combined with other methods (such as

sparse representation) to estimate FBNs with modularity (Qiao et al.,

2018), which will be our future work. Second, we focus on the within-

module connection in this work by introducing an accurate number

of modules in the estimated FBNs, without emphasizing between-

module connections. In the future, we plan to incorporate both

within-module and between-module connections in to the proposed

framework for FBN-based brain disease analysis. Third, the small

sample size could be an important limitation to the generalizability

and replicability of this study. To alleviate this problem, we will utilize

transfer learning (Pan and Yang, 2010; Valverde et al., 2021) or meta-

learning (Finn et al., 2017; Hospedales et al., 2021) strategy to model

the modularity structure of FBN.

5. Conclusion

In this paper, we propose AM-PC method to estimate FBNs for

MCI identification. Specifically, we explicitly impose constraints on

the rank of the Laplacian matrix and the number of modules of the

brain network, aiming to construct sparse FBNs with an accurate

number of modules. We also develop an effective optimization

algorithm to solve the proposed objective function. Experiments

were performed on the ADNI dataset, and the AM-PC achieves the

accuracy of 80.13%, sensitivity of 78.13%, specificity of 81.82%, and

AUC of 87.73% in MCI identification.
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